|
import java.util.*; |
|
protected int timeIndex; |
|
protected int timeIndex = 1; |
|
private Queue<Update> updateQueue = new LinkedList<Update>(); private Update nextUpdate = null; |
|
* @param weights - the nubmer of weights found in a node |
|
* @param weights - the number of weights found in a node |
|
// if(lattice[i] > maxLatticeDim?) { // maxLatticeDim? = lattice[i]; // } //end if |
|
//Initializes? each node randomly, not very well done |
|
//I have found that in a 2D map with equal dimensions //that if you set each weight outward from the center //at a distance of about a quarter, and then guassian //it from there with a .5 = dimension/4, that it works //alot better, but my code is far to complex and messy //to include here |
|
for(int i=0; i<nodes.length;i++) { |
|
for(int i=0; i<size();i++) { |
|
public int size() { return nodes.length; } public void addUpdate(double[] input, int index) { updateQueue.offer(new Update(input,index)); } public void distributeUpdate(int num) { if((nextUpdate == null || nextUpdate.startNode > size()) && !updateQueue.isEmpty()) { nextUpdate = updateQueue.poll(); bmu = getBMU(nextUpdate.weights); timeIndex++; } if(nextUpdate == null) return; for(int i=nextUpdate.startNode; i<size() && i < (nextUpdate.startNode + num); i++) { nodes[i].update(nextUpdate.weights, nextUpdate.index); nextUpdate.startNode++; } } |
|
for(int i=0; i<nodes.length; i++) { |
|
for(int i=0; i<size(); i++) { |
|
private class Update { public double[] weights; public int index; public int startNode; public Update(double w[], int i) { weights = w; index = i; startNode = 0; } } |
|
//Make? this smarter, it should degrade over time, and it determines //The? size of the area to update, it should be based on the physical //size of the map, not the number of nodes (easiest is the smallest dimension) //I find its best if it slowly decreases in size over about 100 to 1000 ticks/updates double variance = 10/map.timeIndex; |
|
double variance = Math.min(2,Math.log(.2*map.timeIndex+1)+.25); |
|
//double limiter = Math.max(Math.exp(-(map.timeIndex/1000)),.75); if(neighborhood < 0.001) return; |
|
//This? makes the whole thing ALOT faster. Remove for precision or if //you wanna test how you bot handles turn skipping. if(neighborhood < 0.0002) return; //Much? more can be done here, this should also be based on time //and it is, however if this is the bmu, then it will get changed //to the input, an undesirable thing later on. I never did this in //my prototype gun, I could of achieved greater precision here |
|
//This? is just the index updating, very important to multiply in the neighborhood //otherwise it gets very messy later on, not to much you can do here unlike other areas //.7 is purely a magic number I came up with, I find binIndexes / 30 works well too |
|
// statBin[i] = KTools.rollingAvg(bin[0][i], neighborhood*input, // Math.min(update_num, 5), 100); |
|
Yah, I realize I could do better for an example, but I really wanna see what everyone else can come up with for this, its a very basic SOM system, I have myself introduced my own distributed update and so on, this is just the data control. If you like I can add things into this, but I am not an expert programmer, and my methods are anything but pretty. --Chase-san |
|
Yah, I realize I could do better for an example, but I really wanna see what everyone else can come up with for this, its a very basic SOM system, I have myself introduced my own distributed update and so on, this is just the data control. If you like I can add things into this, but I am not an expert programmer, and my methods are anything but pretty. --Chase-san Its still not running 100% when I plug it into my old prototype gun, but mostly cause I think it uses much more well formed code. ;) --Chase-san |
package chase.s2.net;
import java.util.*;
public class SelfOrganizingMap {
protected SelfOrganizedNode[] nodes;
protected SelfOrganizedNode bmu;
protected int[] lattice;
protected int statBinIndexes;
protected int weights;
protected int timeIndex = 1;
private Queue<Update> updateQueue = new LinkedList<Update>();
private Update nextUpdate = null;
/**
* Creates a self organizing map with a lattice size, stat indexes and
* number of node weights as stated.
* @param lattice - An array of integers, designating a shape of the lattice
* @param statIndexes - number of indexes in output array
* @param weights - the number of weights found in a node
*/
public SelfOrganizingMap(int[] lattice, int statIndexes, int weights) {
if(lattice.length < 1)
throw new RuntimeException("Lattice requires atleast 1 dimension.");
statBinIndexes = statIndexes;
this.lattice = lattice;
this.weights = weights;
int latticeSize = 1;
for(int i=0; i<lattice.length; i++) {
latticeSize *= lattice[i];
// if(lattice[i] > maxLatticeDim) {
// maxLatticeDim = lattice[i];
// } //end if
} //end for
nodes = new SelfOrganizedNode[latticeSize];
int[] vector = new int[lattice.length];
for(int i=0; i<latticeSize; i++) {
nodes[i] = new SelfOrganizedNode(vector, this);
initialize(nodes[i], vector);
vector[0]++;
for(int j=1; j<lattice.length; j++) {
if(vector[j-1] >= lattice[j-1]) {
vector[j-1] = 0;
vector[j]++;
} //end if
} //end for
} //end for
}
//Notice: In desperate need of a better initialization!
private void initialize(SelfOrganizedNode n, int[] position) {
for(int i=0; i<weights; i++)
n.weights[i] = Math.random();
}
public void updateMap(double[] input, int index) {
timeIndex++;
bmu = getBMU(input);
for(int i=0; i<size();i++) {
nodes[i].update(input, index);
}
}
public int size() {
return nodes.length;
}
public void addUpdate(double[] input, int index) {
updateQueue.offer(new Update(input,index));
}
public void distributeUpdate(int num) {
if((nextUpdate == null || nextUpdate.startNode > size())
&& !updateQueue.isEmpty()) {
nextUpdate = updateQueue.poll();
bmu = getBMU(nextUpdate.weights);
timeIndex++;
}
if(nextUpdate == null) return;
for(int i=nextUpdate.startNode; i<size()
&& i < (nextUpdate.startNode + num); i++) {
nodes[i].update(nextUpdate.weights, nextUpdate.index);
nextUpdate.startNode++;
}
}
public SelfOrganizedNode getBMU(double[] input) {
int bmu = 0;
double smallestDifference = Double.POSITIVE_INFINITY;
//there is no faster way as the data in the nodes changes constantly
for(int i=0; i<size(); i++) {
double difference = nodes[i].difference(input);
//small shortcut, as we need every ounce of speed
if(difference < 0.002) return nodes[i];
if(difference < smallestDifference) {
bmu = i;
smallestDifference = difference;
}
}
return nodes[bmu];
}
private class Update {
public double[] weights;
public int index;
public int startNode;
public Update(double w[], int i) {
weights = w;
index = i;
startNode = 0;
}
}
}
public class SelfOrganizedNode {
protected SelfOrganizingMap map;
protected int position[];
protected double weights[];
public float statBin[];
protected SelfOrganizedNode(int[] latticePosition, SelfOrganizingMap parent) {
position = latticePosition.clone();
map = parent;
statBin = new float[map.statBinIndexes];
weights = new double[map.weights];
}
public void update(double[] input, int index) {
double distance = distance(map.bmu);
double variance = Math.min(2,Math.log(.2*map.timeIndex+1)+.25);
double neighborhood = Math.exp(-(variance*variance*distance*distance)/2.0);
//double limiter = Math.max(Math.exp(-(map.timeIndex/1000)),.75);
if(neighborhood < 0.001) return;
for(int i=0; i < map.weights; i++) {
weights[i] += neighborhood*(input[i] - weights[i]);
}
for(int i=0; i<map.statBinIndexes; i++) {
int diff = Math.abs(index - i);
float stat = (float)Math.exp(-(.7*.7*diff*diff)/2.0);
statBin[i] += neighborhood*stat;
}
}
protected float distance(SelfOrganizedNode n) {
return distance(position, n.position);
}
protected double difference(double[] input) {
return distance(weights, input);
}
public static final float distance(int[] p, int[] q) {
float k, d = 0;
for(int i=0; i<p.length; i++) {
d += (k=((float)p[i]-(float)q[i]))*k;
}
return d;
}
public static final double distance(double[] p, double[] q) {
if(p == null || q == null) return Double.POSITIVE_INFINITY;
double k, d = 0;
for(int i=0; i<p.length; i++) {
d += (k=(p[i]-q[i]))*k;
}
return d;
}
}
Its still not running 100% when I plug it into my old prototype gun, but mostly cause I think it uses much more well formed code. ;) --Chase-san